ON SYSTEMS OF DIFFERENTIAL EQUATIONS FOR
HEAT AND MASS TRANSFER IN CAPILLARY POROUS
BODIES

A. V. Lykov UDC 536.24.02

We consider converting a system of differential equations for heat and mass transfer in capil-
lary porous bodies with transfer potentials T, u, and P to a system of differential equations
with mass transfer potentials T, 6, and P. We discuss ways of simplifying the transfer equa-
tions and the interrelationship of the heat and mass transfer coefficients.

In recent years solutions of the system of differential equations of heat and mass transfer in capil-
lary porous bodies have been widely used in engineering calculations in drying technology, structural
thermophysics, and other branches of industry [1-3]. In addition, various means have been employed for
selecting fundamental transfer characteristics. For example, in the drying of moist materials, the tem-~
perature T, moisture content u, and pressure P are chosen as the transfer potentials in the majority of
cases; in other cases, the temperature T, the moisture transfer potential 6, and the pressure P are chosen.
Although the system of differential equations that is obtained is the same, the transfer coefficients and
thermodynamic characteristics are different since they refer to different transfer potentials. Hence there
arise certain questions concerning the interrelationship among these transfer coefficients. We shall dwell
on this in more detail.

1. We consider first the simple case of the heat and moisture transfer in the drying of moist mater-
ials in which the gradient of the total pressure is zero (P = const, VP = 0). If, as an approximation, we
assume that the thermodynamic characteristics (specific heat capacity and thermal gradient coefficient)
and the transfer coefficients (thermal diffusivity and moisture diffusion coefficients) do not depend on the
coordinates of the body, then, when the variables T and u are chosen as the transfer potentials, the system
of differential equations for the heat and moisture transfer assume the form [2]
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In the derivation of the equations (1) and (2) it is assumed that the body moisture content u is equal to the
body liquid moisture content u; (u = u,) and that the specific heat capacity of the moist body is given by

C =Ly - ] U 3)

The thermal gradient coefficient 6 is referred to the difference of the moisture contents (6 = o).

Equations (1) and (2) are derived from the energy and mass conservation equations with the use of the
Fourier heat conduction law and the law for the nonisothermal diffusion of moisture in the form

I = — 0,00Vl — a,,0,6VT, 4)
where jm is the moisture flux density.

‘ For the drying of layered materials, consisting of miscellaneous adjacent moist bodies, we use the
system of differential equations of heat and moisture transfer with transfer potentials T and @, since a
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jump in moisture content occurs on a boundary separating individual layers.

The moisture transfer potential 0 is a function of the moisture content and the temperature of the
body; thus,

0=q(u, T)=0(@, 7). (5)

We then have
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where Cm = (9u/89)7 is the specific isothermal mass capacity (moisture capacity), and Or'r = (86/6T)u is
the temperature coefficient of the mass transfer potential.

Using the relation (6), and assuming that the thermodynamic characteristics Cy,; and 931' do not de-
pend on the coordinates and the time, we can write the system of equations (1) and (2) in the form
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where the thermodynamic characteristics and the transfer coefficients are, respectively, given by
, V. L
¢ =c -+ erC,0%, 6:6;—}—0T(a—m——1), )
a =Mc'p, o =aclc’, @, = a,c'lc, (10)

The system of equations (7), (8) is identical with the system of equations (1), (2), except that the heat
capacities, the diffusion coefficients, and the thermal gradient coefficients have different magnitudes.

The equation of moisture transfer (8) can be obtained from the mass conservation equation

ou .
X div
Po ot Vi, (11)

with the use of the nonisothermal moisture conductivity law
where 0g is the thermal gradient coefficient referred to the difference of the potentials*:

8 .
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The relation (13) is obtained in going from equation (4) to the relations (10) with the aid of the expression
(6). Substituting equation (12) into equation (11) and noting that Ay, and 69 do not depend on the coordinates,
we obtain the differential equation (8) in which the expressions for the coefficients 4y, and 6' are the same
as those in equations (9) and (10).

In some papers and books the indices are omitted from the coefficients @', ¢', ay,, and 6', resulting
in the incorrect notion that the coefficients a, ¢, a;,, and ¢ are the same in the systems (1), (2) and (7),
(8). It is necessary to keep in mind that the transfer potentials are taken on the basis of the description of
the heat and moisture transfer. However, for many moist materials in the process of drying the quantity
Cmf'r is small (not the quantity O/ itself, but the product Cmf7), so that erCybmp/c < 1; we then obtain

¢ =, a'==qa, @, =d,. (14)
In this case the heat capacities, and the coefficients of heat and moisture diffusion, are the same in
the two systems (1), (2) and (7), (8).

If the inequality OJI.(a;n/am—l)/G <« 1 holds then § = Cm6'; the reverse case corresponds to 6g = 0,
i.e., we can neglect the magnitude of the heat and moisture conductivity (the moisture transfer is described
merely by the gradient of the mass transfer), and we then have

*The coefficients 6 (grad—!) and 6p (grad m-!) have different dimensionalities; therefore, in some papers a
coefficient éé (6é = Cm0¢) is introduced. It has the same dimensionality as 0.
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C 6’ ~ 0, (Lu™t—1). (15)

If the moisture transfer potential does not depend on the temperature (0 = 0), the thermal gradient
coefficient dg is not equal to zero (6g = 6/Cp), since the second term in the expressmn (12) describes the

thermal moisture conductivity. Analogous relations hold for nonisothermal diffusion in binary gas mixtures
in which the mass concentration gradient can be expressed in terms of the gradient of the partial pressure
and the gradient of the temperature. In addition, it is necessary to take into account the thermal diffusion
or Soret effect (for details, see [4], Chap. 8).

By passing to the limit in the system of equations (1), (2), we obtain, as special cases, the Fourier
differential equation of heat conduction and Fick's differential equation of diffusion.

2. Under intense evaporation of moisture inside a capillary porous body, a gradient of the total pres-
sure appears, subject to whose action a vapor transfer takes place of filirational motion type. The mass
flux density jg of such a transfer is given, basedonDarcy's Law, by the equation

jf =j; 3= _k,,VP- (16)

The differential equation describing the pressure field in the body is derived from the balance equation for
the mass of moist air in the pores and capillaries of the body

Q (uy - 11y) o du
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with the aid of the relation (18).

If, as an approximation, we assume that the moist air (vapor--gas mixture) in the capillaries and
pores of the body obeys Clapeyron's equation of state, and if we neglect swelling of the capillary walls, we
can write

i+ ) = Ag; b (dP — —7: dT & f db) : (18)
where b = by + b; (saturatiosn of the pores and capillaries by the vapor by and the air by).

Using the relations E bj = 1 and u; ® u, and performing simple algebraic manipulations, we obtain
the following system of difilerential equations:

or
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in which the coefficients Kij @i, j=1,2,3) are equal to
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where Cyp, is the specific capacity of the vaporous moisture (capamty of the capillary body mth respect
to the moist air): .

_ Mm (26)

vm PORT

ap is the coefficient of convective diffusion @p = kp/Cvmpo); B is a coefficient, which depends on the poro-
sity I and the moisture content u:
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it takes into account how the fraction of the pores and capillaries of the body filled with moist air varies as
a function of the moisture content of the body; 0p is the relative coefficient of filtrational flow of vaporous
moisture:

6); - kp/amp()' (28)

In deriving the heat transfer equation (19) we made the assumption that the convective heat transfer
in the pores and capillaries is a small quantity, such that it could be neglected.

If we take T, 6, and P as the moisture transfer potentials, the system of differential equations of
heat and mass transfer assumes the form

orT

= Knv*T + Kisy®0 -- KV°Ps (29)
B Ky - Ko™ 1~ Kiay®P;
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where the coefficients K{j are given by
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the relative coefficient % of the filtrational flow of moisture is defined in terms of the moisture conductivity
coefficient Am:

§ =_"P =2 | (35)

Comparing the coefficient Kjj and K1 we note that in the coefficients K1 there appears, as an additional
factor, the specific isothermal mass capacity Cpy as the transfer coefflclent from the moisture content u to
the moisture transfer potential. Moreover, it is important o note that in deriving the system of equations
(29)-(31), we did not assume that the temperature coefficient of the moisture transfer potential was equal to
Zero (0,'1, # 0), It is then completely natural that the thermal gradient coefficients, 6(6 = J,) and ég, have
different values, since they are referred to different vapor transfer potentials for the same temperature
drop. In contrast to the coefficients 0p and 61’), the coefficients 6g and 6 are not directly proportional to
each other (see relation (13)).

Once again, it should be remarked that at times the primes on the coefficients Kjj in the system of
equations (29)-(31) will be omitted; however, this does not mean that they are equal to the coefficients Kjj
in the system of equations (19)-(21). It can also be remarked that Yu. A. Mikhailov's calculations [3] show
that the coefficients 8 and erP/cT are significantly less than the coefficient €/Cym for a large number of
moist materials; therefore, we can sometimes simplify the expressions for the coefficients Kjj; however,
the most reliable way is to determine all of the transfer coefficients experimentally.

3. In making approximate calculations, we can, in practice, simplify the transfer equations (21) and
(31). Since the mass content of vapor and air in the capillaries and pores of the body is negligibly small in
comparison with the mass content of liquid (uy + u; < uy), we can set the left side of equation (17) equal to
zero. From equation (17) we then obtain
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Physically, this means that the total pressure drop inside the body arises only at the expense of evaporation
of the liquid and of the presence inside the body of a resistance to the vapor motion (resistance to the filtra-
tional flow of moisture).

The relation (36) allows us to eliminate the terms Kj; in the system of equations (19)-(21) and to re-
duce it to the system (1)-(2), and to reduce the system of equations (29)-(31) to the system (7)-(8). There-
fore, the system of equations most widely used in drying technology is the system of equations (1)~(2) or the
system (7)-(8), analogous to it.

These simplifications can be extended into regions of the body in a moist condition. For a moisture
content of the body larger than hydroscopic, the vapor pressure of the material does not depend on the
moisture content but only on the temperature (the pressure of the saturated vapor is a single-valued func~
tion of the temperature); then for a sufficiently intense evaporation of liquid inside the body, the total pres-
sure P inside the body is a function of the temperature only (P = f(T)). As an approximation, we can write

o oP 1\,
s,pﬂ—gt——kp(aT)VT. 87)
In this case the heat transfer differential equation becomes the usual Fourier differential equation of heat
conduction with an effective thermal conductivity coefficient taking account of the expenditure of heat in the
evaporation of liquid inside the body (for details, see [4]). However, for an intense evaporation of liquid
inside the body and large moisture flows, it is necessary to take into account the convective component of
heat transfer inside the body. In this case the equation of heat transfer has the form

oT ‘ du .
P, o = MW?*T - erp, 137 -+ E Cpi JoiVT - (38)

Moreover, from all the mass fluxes jmj (i = 1, 2,3) a principal one is selected, depending on the regimes
of the drying parameters.

4, In conclusion, it should be remarked that a criterion € for a phase transformation is the non-
stationary moisture transfer characteristic. It was introduced as the characteristic of a vaporous moisture
source according to the relation

du
112 hes —]21 = 8‘0“-0? . (39)
For stationary moisture transfer the expression for the source must be different, since in this case du/ér
- 0, & — =, and, consequently, the value of the source in relation (39) has an indeterminacy. This inde-
ferminacy is easily resolved; we then obtain

lg= =1y = divj = a0, 9% + a,,00,y*T. (40)

The quantity a6, is the thermal diffusion coefficient for the diffusion of the vaporous moisture into
the capillary porous body (a;%;i =am6s). It is assumed here that the coefficients ayy, 6; do not depend on
the coordinates. The relation (40) is the most general expression for the vaporous moisture source Ijp; it
is even valid for nonstationary moisture transfer. We obtain the expression (39) from it as a special case.
Then, in place of the system of equations (1)-(2), we shall have a system of differential equations analogous
to the system of equations (19)-(20) without the terms V2P:
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Comparmg the relatlons (43)~(44) with the relations (22)~(23), we find that K21 = Koy, Kzz = Kyo; the coef-
ficients Kj; and Ky, are, respectively, equal to the coefficients Ky; and Ky, if we put € = amy/am and 6 = &,
(for details concerning such assumptions, see [6]).

Thus the system of differential equations (41)-(42) of heat and mass transfer can be used for calcula-
tions of moisture and heat transfer in capillary porous bodies for arbitrary changes in u and T, including,
in fact, stationary processes. The solution of the system of equations (41)-(42) is used in structural ther-
mophysics, in the calculations of a number of chemical—industrial processes, and also in the treatment of
experimental methods of determining the thermophysical properties of moist materials. Quite naturally,
the system of equations (41)-(42) can be generalized by introducing the additional moisture transfer poten-
tial P. As a result, we obtain the system of equations (19)-(21) or the system (29)-(31) in which, in the
formulas for the coefficients K;; and KIJ, there appear, in place of the criterion &, the coefficients of dif-
fusion ¢y and thermal diffusion (@ r’{u =am;8,) of the vaporous moisture.

Thus the systems of differential equations of heat and mass transfer, (19)-(21) or (29)-(31), are the
most general systems of equations for the diffusion transfer of heat and moisture in capillary porous bodies
with kinetic coefficients in which, instead of the phase transformation coefficient, there appear coefficients
of diffusion and thermal diffusion or the coefficient for the filtrational transfer of vaporous moisture.

NOTA TION

u is the moisture content of body;

T is the temperature;

P is the total pressure of air inside body;

c is the specific heat capacity of moist body;

Co is the specific heat capacity of absolute dry body;
c] is the specific heat capacity of fluid;

a =MA/cpy  is the thermal diffusivity of moist body;

A is the thermal conductivity of body;

Py is the density of absolute dry body;

T is the time;

6 is the mass (moisture) transfer potential;

Cm is the specific isothermal mass capacity of body;
Gr'r is the temperature coefficient of mass transfer;

r is the specific heat of evaporation (r =1y, = ry);

€ is the criterion of phase transition of fluid into vapor;

6 is the thermo-gradient coefficient referred to moisture content difference;
Am is the moisture conductivity;

M is the molecular mass of humid air;

I is the porosity; .

b is the saturation of pores and capillaries of body with moisture;

R is the universal gas constant;

Cp is the isobaric heat capacity;

Cyvm is the specific capacity of vaporous moisture;

ap is the convective diffusivity;

kp is the coefficient of filtrational transfer of vaporous moisture;

Sp is the relative coefficient of filtrational flow of vaporous moisture;

p is the density or concentration;

B is the coefficient determined by formula (27) Remaining designations are given in text.
Subscripts

denotes the dry body skeleton;

denotes the vapor;

denotes the liquid;

denotes the air;

denotes the moisture mass flow (i, j = 1,2, 3);

denotes the transition from vapor into liquid (condensation);
denotes the liquid evaporation (in formulas (39), (40), and 43)).
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